Learning to Rank with Nonsmooth Cost Functions

نویسندگان

  • Christopher J. C. Burges
  • Robert Ragno
  • Quoc V. Le
چکیده

The quality measures used in information retrieval are particularly difficult to optimize directly, since they depend on the model scores only through the sorted order of the documents returned for a given query. Thus, the derivatives of the cost with respect to the model parameters are either zero, or are undefined. In this paper, we propose a class of simple, flexible algorithms, called LambdaRank, which avoids these difficulties by working with implicit cost functions. We describe LambdaRank using neural network models, although the idea applies to any differentiable function class. We give necessary and sufficient conditions for the resulting implicit cost function to be convex, and we show that the general method has a simple mechanical interpretation. We demonstrate significantly improved accuracy, over a state-of-the-art ranking algorithm, on several datasets. We also show that LambdaRank provides a method for significantly speeding up the training phase of that ranking algorithm. Although this paper is directed towards ranking, the proposed method can be extended to any non-smooth and multivariate cost functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

Stochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by Exploiting Structure

In this work we consider the stochastic minimization of nonsmooth convex loss functions, a central problem in machine learning. We propose a novel algorithm called Accelerated Nonsmooth Stochastic Gradient Descent (ANSGD), which exploits the structure of common nonsmooth loss functions to achieve optimal convergence rates for a class of problems including SVMs. It is the first stochastic algori...

متن کامل

Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones‎

In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...

متن کامل

Greedy Learning of Generalized Low-Rank Models

Learning of low-rank matrices is fundamental to many machine learning applications. A state-ofthe-art algorithm is the rank-one matrix pursuit (R1MP). However, it can only be used in matrix completion problems with the square loss. In this paper, we develop a more flexible greedy algorithm for generalized low-rank models whose optimization objective can be smooth or nonsmooth, general convex or...

متن کامل

Learning of Generalized Low-Rank Models: A Greedy Approach

Learning of low-rank matrices is fundamental to many machine learning applications. A state-of-the-art algorithm is the rank-one matrix pursuit (R1MP). However, it can only be used in matrix completion problems with the square loss. In this paper, we develop a more flexible greedy algorithm for generalized low-rank models whose optimization objective can be smooth or nonsmooth, general convex o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006